32 research outputs found

    A dynamic neural field model of temporal order judgments

    Get PDF
    Temporal ordering of events is biased, or influenced, by perceptual organization—figure–ground organization—and by spatial attention. For example, within a region assigned figural status or at an attended location, onset events are processed earlier (Lester, Hecht, & Vecera, 2009; Shore, Spence, & Klein, 2001), and offset events are processed for longer durations (Hecht & Vecera, 2011; Rolke, Ulrich, & Bausenhart, 2006). Here, we present an extension of a dynamic field model of change detection (Johnson, Spencer, Luck, & Schöner, 2009; Johnson, Spencer, & Schöner, 2009) that accounts for both the onset and offset performance for figural and attended regions. The model posits that neural populations processing the figure are more active, resulting in a peak of activation that quickly builds toward a detection threshold when the onset of a target is presented. This same enhanced activation for some neural populations is maintained when a present target is removed, creating delays in the perception of the target’s offset. We discuss the broader implications of this model, including insights regarding how neural activation can be generated in response to the disappearance of information. (PsycINFO Database Record (c) 2015 APA, all rights reserved

    Case report: Treatment of congenital lobar emphysema with lung lobectomy in a puppy

    Get PDF
    An 11-week-old, sexually intact female Catahoula Leopard dog was evaluated for a multiple-week history of exercise intolerance and intermittent periods of respiratory distress. Thoracic radiographs revealed a markedly hyperinflated right lung field, with compression of the surrounding lung lobes. Thoracic computed tomography further localized the hyperinflation to the right middle lung lobe, with suspicion of congenital lobar emphysema. A right intercostal thoracotomy with right middle lung lobectomy was performed successfully. Histopathology results confirmed bronchial cartilage hypoplasia with marked emphysema and pleural fibrosis. The puppy recovered from surgery uneventfully and was discharged from the hospital without any postoperative complications. At 18 months postoperatively, the dog was clinically normal with no return of respiratory distress. This case report describes successful surgical treatment of a large breed puppy with the uncommonly reported condition of congenital lobar emphysema

    Unlocking the Climate Record Stored within Mars’ Polar Layered Deposits

    Get PDF
    In the icy beds of its polar layered deposits (PLD), Mars likely possesses a record of its recent climate history, analogous to terrestrial ice sheets that contain records of Earth's past climate. Both northern and southern PLDs store information on the climatic and atmospheric state during the deposition of each layer (WPs: Becerra et al.; Smith et al). Reading the climate record stored in these layers requires detailed measurements of layer composition, thickness, isotope variability, and near-surface atmospheric measurements. We identify four fundamental questions that must be answered in order to interpret this climate record and decipher the recent climatic history of Mars: 1. Fluxes: What are the present and past fluxes of volatiles, dust, and other materials into and out of the polar regions? 2. Forcings: How do orbital/axial forcing and exchange with other reservoirs affect those fluxes? 3. Layer Processes: What chemical and physical processes form and modify layers? 4. Record: What is the timespan, completeness, and temporal resolution of the climate history recorded in the PLD? In a peer reviewed report (1), we detailed a sequence of missions, instruments, and architecture needed to answer these questions. Here, we present the science drivers and a mission concept for a polar lander that would enable a future reading of the past few million years of the Martian climate record. The mission addresses as-yet-unachieved science goals of the current Decadal Survey and of MEPAG for obtaining a record of Mars climate and has parallel goals to the NEXSAG and ICE-SAG reports

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Pyruvate Kinase Isoform Expression Alters Nucleotide Synthesis to Impact Cell Proliferation

    Get PDF
    Metabolic regulation influences cell proliferation. The influence of pyruvate kinase isoforms on tumor cells has been extensively studied, but whether PKM2 is required for normal cell proliferation is unknown. We examine how PKM2 deletion affects proliferation and metabolism in nontransformed, nonimmortalized PKM2-expressing primary cells. We find that deletion of PKM2 in primary cells results in PKM1 expression and proliferation arrest. PKM1 expression, rather than PKM2 loss, is responsible for this effect, and proliferation arrest cannot be explained by cell differentiation, senescence, death, changes in gene expression, or prevention of cell growth. Instead, PKM1 expression impairs nucleotide production and the ability to synthesize DNA and progress through the cell cycle. Nucleotide biosynthesis is limiting, as proliferation arrest is characterized by severe thymidine depletion, and supplying exogenous thymine rescues both nucleotide levels and cell proliferation. Thus, PKM1 expression promotes a metabolic state that is unable to support DNA synthesis.status: publishe

    Pyruvate Kinase Isoform Expression Alters Nucleotide Synthesis to Impact Cell Proliferation

    No full text
    Metabolic regulation influences cell proliferation. The influence of pyruvate kinase isoforms on tumor cells has been extensively studied, but whether PKM2 is required for normal cell proliferation is unknown. We examine how PKM2 deletion affects proliferation and metabolism in nontransformed, nonimmortalized PKM2-expressing primary cells. We find that deletion of PKM2 in primary cells results in PKM1 expression and proliferation arrest. PKM1 expression, rather than PKM2 loss, is responsible for this effect, and proliferation arrest cannot be explained by cell differentiation, senescence, death, changes in gene expression, or prevention of cell growth. Instead, PKM1 expression impairs nucleotide production and the ability to synthesize DNA and progress through the cell cycle. Nucleotide biosynthesis is limiting, as proliferation arrest is characterized by severe thymidine depletion, and supplying exogenous thymine rescues both nucleotide levels and cell proliferation. Thus, PKM1 expression promotes a metabolic state that is unable to support DNA synthesis.United States. Dept. of Defense. Congressionally Directed Medical Research Programs (Postdoctoral Award W81XWH-12-1-0466)Smith Family FoundationBurroughs Wellcome FundDamon Runyon Cancer Research FoundationStern FamilyAmerican Association for Cancer ResearchNational Cancer Institute (U.S.) (NIH 5P30CA1405141)National Cancer Institute (U.S.) (R01CA168653

    The major genetic determinants of HIV-1 control affect HLA class I peptide presentation.

    Get PDF
    Infectious and inflammatory diseases have repeatedly shown strong genetic associations within the major histocompatibility complex (MHC); however, the basis for these associations remains elusive. To define host genetic effects on the outcome of a chronic viral infection, we performed genome-wide association analysis in a multiethnic cohort of HIV-1 controllers and progressors, and we analyzed the effects of individual amino acids within the classical human leukocyte antigen (HLA) proteins. We identified >300 genome-wide significant single-nucleotide polymorphisms (SNPs) within the MHC and none elsewhere. Specific amino acids in the HLA-B peptide binding groove, as well as an independent HLA-C effect, explain the SNP associations and reconcile both protective and risk HLA alleles. These results implicate the nature of the HLA-viral peptide interaction as the major factor modulating durable control of HIV infection
    corecore